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The failure of a one-dimensional gravitational system to relax to equilibrium on predicted time scales
has raised questions concerning the ergodic properties of the dynamics. A failure to approach equilibri-
um could be caused by the segmentation of the phase space into isolated regions from which the system
cannot escape. In general, each region may have distinct ergodic properties. By numerically investigat-
ing the stability of two classes of periodic orbits for the N-body system in a previous work [Phys. Rev. A
46, 837 (1992)], we demonstrated that phase-space segmentation occurred when N =10. Tentative re-
sults suggested that segmentation also occurred for 11 <N =20. Here this work has been refined. Based
on calculations of Lyapunov characteristic numbers, we argue that segmentation disappears and the sys-
tem is both ergodic and mixing for N = 11, the critical population.

PACS number(s): 05.45.+b, 46.10.+z, 95.10.Fh

I. INTRODUCTION

The system of infinitely extended parallel mass sheets
moving solely under their mutual gravitational attraction
has provided a model system for testing numerous
theories of dynamical relaxation. Members of this one-
dimensional gravitating system (one-dimensional galaxy)
are not subject to either escape or a singular “interparti-
cle” interaction, so the system is especially amenable to
accurate computer simulation. Early studies showed that
systems with large populations failed to relax to equilibri-
um on predicted time scales and thus raised questions
concerning the ergodic properties of the motion. Some
time ago we showed that, for small systems (three or four
sheets), the phase space has coexisting stable and unstable
regions. A central question concerning the system dy-
namics is the existence of a critical population N, for
which the phase space consists of a single ergodic and
mixing component. If N, exists, then for greater or equal
populations the usual assumptions of ergodicity apply
and the equilibrium properties are correctly represented
by the microcanonical ensemble of statistical physics.

In order to obtain some insight concerning the system’s
ergodic properties, in a previous article [1] we investigat-
ed the stability of two classes of periodic orbits construct-
ed in the p(x,v) space of the one-dimensional (1D) self-
gravitating system. The main idea was to examine the
stochastic properties of the 1D system and to determine
if there is a critical system population above which each
type of periodic orbit becomes unstable. By calculating
Lyapunov characteristic numbers (LCN’s) for small per-
turbations of the periodic orbits, we concluded that stable
orbits exist in 1D systems with populations of 10, demon-
strating that the phase space is not everywhere chaotic.

For N =11 the LCN’s indicated that both classes of
periodic orbits became unstable, but that their LCN’s ap-
parently differed, suggesting that the phase space was
segmented into separate ergodic components. To investi-
gate this apparent segmentation in more detail, the
dependence of a given LCN on the “distance” between

48

the reference orbit and the exact periodic orbit was stud-
ied. It was observed that in many instances, different per-
turbations produced distinctly different LCN’s, which
suggested that the entire phase space is not connected for
N =11. Segmentation of the phase space was observed
through N =20 (the largest system considered) and we
concluded that the critical system population that leads
to chaos is N, > 20.

A nagging concern regarding these preliminary con-
clusions was the adequacy of the length of the run times
used to obtain the LCN’s. It is anticipated that the time
required to adequately sample the phase space increases
dramatically with the dimension, and hence system popu-
lation. Although a dynamical evolution time of 50 000z,
(where ¢, is the approximate time for a member to
traverse the system) had been used for most computer
simulations of the systems examined, we suggested that
simulations of much longer duration were needed to en-
sure convergence to the LCN’s found in each case. That
is the theme of this research.

New computer hardware and the availability of addi-
tional CPU time have enabled us to study the stability of
these periodic orbits for significantly longer evolution
times. In the current work we have found that for N <10
all of the unstable trajectories examined appear to con-
verge to a common LCN for a given N. Stable trajec-
tories were still found, validating our previous conclusion
that 1D systems of population N < 10 are not completely
chaotic and therefore can never assume the equilibrium
distributions derived by Rybicki [2]. For systems with
11 =N =30 all trajectories examined appeared to con-
verge to a common LCN for a given N. However, this
convergence is slow and has a conservative lower bound
of 31X 10%, for N=11. If no other stable orbits exist,
the phase space may be completely connected and 1D
systems (for N =11) are chaotic. Although this con-

" clusion has been reached through extrapolation, the data

strongly support a critical population N, =11 for com-
pletely chaotic behavior in 1D systems.
A complete description of 1D systems and the pro-
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cedures employed in this research are given in our previ-
ous article [1]. However, in order to maintain continuity,
a brief review is presented here. This is followed by an
analysis and discussion of the new results.

II. DESCRIPTION OF THE 1D SYSTEM

The one-dimensional self-gravitating system is com-
posed of N identical mass sheets, each of uniform mass
density and infinite in extent in the (y,z) plane. The
sheets move freely along the x axis and accelerate as a re-
sult of their mutual gravitational attraction. The ith
sheet experiences a constant acceleration given by

A;=Q2mG/N)N—-2i+1), (1)

where N 7! is the mass of a sheet and G is the universal
gravitational constant. At an encounter the sheets pass
freely through each other. The energy of the system is
expressed as

N
E=(1/2N)3 v}+2wG/N)3 Ix;—x,| , 2)
i=1 iJ
i<j

where v; and x; are the velocity and position of the ith
particle, respectively.

The equilibrium velocity and position probability den-
sity functions for this system were developed by Rybicki
[2]. In the limit that N — oo these functions are

O(n)=m""'"2exp(—n?) (velocity) , 3)

p(&)=1sech’¢ (position) , (4)
where

n=(v/2)3M /E)!/? Q)
and

E=(3mGM?/2E)x ; (6)

v, x, M, and E represent the velocity, position, total sys-
tem mass, and total system energy, respectively.

The dynamical time required for a sheet to traverse the
system is referred to as the characteristic time and has
been expressed by Luwel, Severne, and Rousseeuw (LSR)
[3] in terms of the maximum value of the equilibrium
density function p(7),

t.=(GMp,, /7). @)

III. MOTIVATION AND HISTORICAL BACKGROUND

The motivational factors for studying the one-
dimensional system are numerous. More than four de-
cades ago, Oort [4] and Camm [5] suggested that the sys-
tem may be an appropriate model for the motion of stars
in a direction normal to the disk of a highly flattened
galaxy. Thirty years ago, Eldrige and Feix [6] showed
the relevance of this system to plasma physics and twenty
years ago, Cuperman, Hartman, and Lecar [7] used the
system to test conjectures concerning mechanisms for
violent relaxation.
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Numerical simulations have been performed by a num-
ber of investigators in order to study the stochastic prop-
erties of 1D systems and the dynamical time required for
these systems to progress to an equilibrium distribution
or to “thermalize.” In 1967 Hohl [8] suggested that 1D
systems should relax on the order of N%,. However,
research by Wright, Miller, and Stein in 1982 [9] using
statistical tests based on'the exact velocity and position
equilibrium density functions derived by Rybicki suggest-
ed that 1D systems do not even approach equilibrium
after 2N 2tc. A few years later, Luwel, Severne, and
Rousseeuw [3] concluded from their investigations that,
for a specific class of counterstreamed conditions in the
u(x,v) space and an initial virial ratio of 0.3, relaxation
takes place within Nt,. In an attempt to resolve the con-
fusion, we [10—13] developed different procedures to test
for thermalization and studied the evolution of an assort-
ment of initial states. Relaxation was clearly not found
for any of the cases. The initial state suggested by LSR
appeared to enter a macrostate that mimics equilibrium
and slowly drifted away from it.

For small-N systems (N =<10) Froeschle and
Scheidecker (FS) [14] studied the rate of divergence of
100 orbits and found for N >S5 no integrable orbits exist-
ed and conjectured that these systems are ergodic. This
was confirmed by Benettin, Froeschle, and Scheidecker
(BFS) [15], who calculated Lyapunov characteristic num-
bers for N =10 and demonstrated an increasing stochasti-
city with increasing N. The conclusions reached by FS
and BFS were later supported by research performed by
Wright and Miller (WM) [16]. They studied systems for
N <10 and found for N >4 that relaxation seemed to
occur in a time >>N?%z, (=10%,).

The work of FS, BFS, and WM used randomly gen-
erated orbits. By selecting periodic orbits for small N, we
found the existence of stable regions in the phase space
[1]. FS had suggested the possibility of small integrable
regions in the phase space that were too small to be
detected by their technique. We also found a segmenta-
tion in the phase space for N > 11. A refinement of this
conjecture is found in the data and results section of this

paper.
IV. LYAPUNOV CHARACTERISTIC NUMBERS

In a stochastic region of phase space, nearby orbits of
dynamical systems diverge exponentially [17]. This ex-
ponential divergence may be determined by calculating
Lyapunov characteristic numbers [18]. This procedure
has been described and used extensively by Contopoulos
and Barbanis [19], Contopoulos, Galgani, and Giorgilli
[20], and BFS [15]. The Lyapunov characteristic number
is defined as

L= lim [In(d/d,)/t] , ®8)

0—0

t—> 0

where d and d, are the deviations for two nearby orbits
at times # and 0. For stable orbits the Lyapunov charac-
teristic number is zero and positive for unstable orbits.
In stochastic regions of the phase space, the use of Eq. (8)
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to determine the Lyapunov characteristic number will
eventually lead to an overflow. Numerically, this can be
avoided if after some time AT we rescale d and define the
Lyapunov characteristic number as [18]

n
L=1lim (1/nAT) 3, [ln(dj/do)] , 9)
n— o j =1

where n =t /AT and represents the number of rescalings.

The separation in phase space of a particular reference
orbit and some nearby orbit is given by
N 172
> (X0 —X0in P+ (voi, —0in )*]

i=1

do=k (10)

Here x; and v, refer to the initial position and veloci-
ty, respectively, of the ith sheet of the reference orbit.
Similarly x;, and vy;, represent the initial conditions of
the nearby orbit. The constant k is dependent on N.
After some time AT the two orbits are separated by

N 172
dj:k 2 [(xir_xin)2+(vir_uin )2] 1
i=1
The nearby orbit is then rescaled according to
Xin =%, t(do/d;) Xy —x;) (12)
'17,~,,=v,~,+(do/dj)(vin—v,»,) ’ (13)

where X;, and D;, respectively represent the rescaled posi-
tion and velocity of the ith sheet of the nearby orbit. The
evolution of the orbits is then resumed and the reference
orbit is considered to be stable if the Lyapunov charac-
teristic number in Eq. (9) coverges to zero and unstable if
it converges to some positive number.

V. SELECTED PERIODIC ORBITS

Two simple periodic orbits were chosen in the u(x,v)
space and are illustrated in Fig. 1. The “breathing
mode” is shown in Fig. 1(a) for a five sheet (illustrated as
particles) system. Initially, all sheets start from rest at
appropriate locations on the x axis. After sometime 7 the
sheets converge simultaneously at the origin. They pass
through each other and after an additional time incre-
ment 7 the system, except for labeling of the sheets, re-
turns to its initial configuration. Similarly, the periodic
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orbit which we refer to as “mode 1’ is shown in Fig. 1(b)
for N=6.

VI. SCALING, SIMULATION, AND PERTURBATION

All initial positions and velocities were scaled accord-
ing to Egs. (5) and (6) with M =1 and 27G =1. This re-
sulted in a characteristic time of 27 and forced a total di-
mensionless energy of three-fourths for all systems. The
center of mass and total momentum were constrained to
zero. The evolution of each system was simulated using
an exact code with updating occurring at each encounter.
The LCN’s were rescaled according to Eqgs. (12) and (13)
every 0.1¢z,. All calculations were performed in double
precision (16 significant figures) on a VAX 4000-500 com-
puter, and energy was conserved to one part in 10'°,

All perturbations to the periodic orbits were made
such that a sphere of radius r around an initial point in
phase space could be examined. For a particular pertur-
bation P >0, the perturbed positions and velocities were
selected as follows:

xiperturbed = xiperiodic( 1+P) ’ (14)
Uiperturbed = viperiodic( 1£P) . (15)

For subsequent sheets the signs of each equation were
simply alternated. One sign was not alternated in order
to avoid symmetry. The perturbed positions and veloci-
ties were then rescaled so that the total energy of the per-
turbed system was 2. These perturbed orbits were used
as the reference orbits for calculation of the LCN’s. The
reference and nearby orbits were separated by d,~ 10~ '°.

VII. DATA AND RESULTS

Dynamical time runs of 4.5X10%t, were executed for
systems of N=35, 6, 10, and 11 sheets. The LCN’s shown
in Fig. 2 illustrate the perturbations of 14.21% and
15.82% from mode 1 result in stable trajectories. Breath-
ing mode perturbations of 9X 107 %%, 0.96%, and
16.31% as well as mode 1 perturbations of 19.07% and
23.97% appear to be converging to a common LCN at
about 4><105tc. However, in the same time frame for
N =6, as shown in Fig. 3, three unstable orbits appear to
converge to a common LCN and two do not. A pertur-
bation of 9.75% from mode 1 still results in a stable tra-

FIG. 1. Ilustration of the collision se-
quence for the breathing mode (B) and mode 1
(M1).
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jectory. Similar results are found in Fig. 4 for N=10
with a 0.40% perturbation from mode 1 providing a
stable orbit. For N =11, Fig. 5 illustrates no stable tra-
jectories were found for perturbations as small as
8X10789% from mode 1. This confirms our previous
conclusion [1] that 1D systems with N <10 can never
progress to an equilibrium distribution since at least one
stable trajectory was found for each system during a
simulation time of 4.5X10%,. However, the question
remains as to whether or not the phase space is segment-
ed for N = 11. Segmentation precludes thermalization.
Segmentation appears to occur in the unstable trajec-
tories for N =6, 10, and 11. However, this segmentation
may vanish for longer simulation times as suggested by
N=5. To check for this possibility, mode 1 perturba-
tions of 9.75%, 11.85%, and 16.48% and a breathing
mode perturbation of 6 X 10~ 8% were simulated through
4X10%, for N=6. The stable trajectory clearly remains
stable and the unstable trajectories begin a trend towards
a common LCN at about 2 X 10%,. This is shown in Figs.
6 and 7. Perhaps a similar convergence is also true for
N=11. To check for this a mode 1 perturbation of
8X107%% and a breathing mode perturbation of
9X 107 3% were permitted to evolve through 15X10%,.

A trend for convergence to a common LCN is evident as
revealed in Fig. 8.

If a time scale can be found for this convergence, this
may represent a thermalization time for the system. To
run the system for additional time was out of the question
since a single simulation for 15X 10%, required approxi-
mately 1X10°% s of CPU. As a crude approximation, we
opted for an extra6;>olation using a least-squares fit of the
data from 10X 10%, to 15X 10%, with the LCN plotted
as a function of 1/time. We obtained a result of
31X 10%, as shown in Fig. 9.

A short run of 2X10*, was carried out for N=30.
The same trend was observed as for N=11. However,
since the data were very limited we can only suggest
without much confidence that the time for the trajec-
tories to merge to a common LCN is approximately a
factor of 10 greater than that for N=11.

VIII. CONCLUSIONS

The extended runs in this research clearly support our
previous conclusion that 1D systems with populations
N =10 are not ergodic and therefore thermalization to an
equilibrium distribution is not possible for them. Howev-

FIG. 6. LCN’s for six sheets
evolved through 4000000z, for
the breathing mode (B) and
mode 1 (M1).
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FIG. 7. LCN’s for unstable
orbits of six sheets evolving
through 4000000¢, for the
breathing mode (B) and mode 1
(M1).

FIG. 8. LCN’s for eleven
sheets evolved through
15000000z, for the breathing
mode (B) and mode 1 (M1).

FIG. 9. Extrapolation of
LCN convergence time for
eleven sheets.



4256

er, contrary to our previous results, the critical popula-
tion for which 1D systems may become chaotic is ap-
parently N.=11, and not N, > 20 as reported earlier [1].
Of course, this conjecture is based on two assumptions:
First, no stable trajectories exist for N = 11, and second,
no other periodic trajectory is situated in an isolated
phase space segment. It is supported by the apparent
convergence of LCN’s initiated near distinct periodic tra-
jectories to the same value.

It is unlikely that there is a stable periodic trajectory
for N =11 since periodic orbits require, at a minimum,
pairs of simultaneous encounters. WM [16] studied the
relationship between the encounter sequence and the rate
of divergence of proximally initialized pairs of trajec-
tories. They found that trajectories which contain nearly
multiple encounters diverge rapidly and the proportion of
these encounters increases with N. We have also analyti-
cally searched for a periodic orbit where, at most, a single
encounter occurs at a given time, but to date none has
been found.

We have no direct way of knowing if there are other
periodic trajectories associated with a further segmenta-
tion of the phase space. We do note, however, that
several of the perturbations were quite large and an ap-
parent convergence to a common LCN was seen for each.
This covers a wide range of possible orbits.

All of this evidence points to the conclusion that 1D
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systems are chaotic for N > 11. A possible thermalization
time is 31X 10%, for N=11, but this is only a rough
lower-bound estimate. We also suggest, with very little
confidence, that the thermalization time for N =30 has a
lower bound ~3X10%,. If this conjecture is correct
then there may be a rapid increase in the thermalization
time with an increase in the system population. Evident-
ly, an increase in the number of degrees of freedom re-
stricts, in a fashion similar to Arnold’s diffusion [21], the
rate at which a small perturbation from an unstable,
periodic orbit explores the phase space.

Although this research gives no accurate estimation of
the thermalization times for 1D systems, we are quite
confident that these times are excruciatingly long and ex-
plains why to date no system has been observed to
thermalize. It is unlikely that the thermalization of sys-
tems with N > 100 will be seen with present computer
technology.
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